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It is shown that the use of axes moving with the tide (Shinohara et al. 1969) simplifies 
the analysis of contaminant dispersion in estuaries. Attention is restricted to estuaries 
which are small in the sense that cross-sectional mixing is rapid and that the tidal 
elevation can be taken to be constant along the estuary. In  agreement with the work of 
Fischer (1972a, b )  it is found that the dominant mechanism for dispersion is the trans- 
verse shear and not the vertical shear. Results are presented to illustrate the depend- 
ence of the upstream penetration of salt upon the estuary geometry as well as upon the 
fresh-water discharge rate. 

1. Introduction 
Much industrial development has been focused on estuaries. This has led to an increas- 

ing dependence upon estuaries for transport, recreation, drinking water, power-pIant 
cooling and waste disposal. Some of these diverse uses can be directly affected, or can 
interfere with each other, when there are changes in the flow pattern or in the salinity 
distribution. For example, the 1976 drought in England and Wales was aggravated by 
the fact that many ' fresh-water ' intakes could not be used because the salt water, and 
even sewage, had penetrated some tens of kilometres further upstream than was usual. 
An indication of the commercial importance of the long-term contaminant and salinity 
distributions in estuaries is given by the number and the large scale of the field studies 
and hydraulic and numerical models which have been reported in the open literature 
(Fischer 1976; Bowden 1967). 

Analytical work on dispersion in estuaries has been hampered by the intrinsic com- 
plexity of nearly periodic turbulent stratified flows. There has been some success with 
semi-empirical model equations in which adjustable terms are introduced to com- 
pensate for the neglect of one or more of the following: transverse motion, vertical 
motion, tidal oscillations (Arons & Stommel 1951; Bowden 1965; Hansen & Rattray 
1965; Harleman & Thatcher 1974). Recently, Imberger (1976) has shown that for 
buoyancy-driven flows in long shallow estuaries the reduced role of vertical stratifica- 
tion and the geometrical constraints imposed upon the flow make it possible to derive 
an analytic description of the dispersion. Here these geometrical ideas are applied to 
tidally dominated flows. An important feature of the present analysis is the use of 
axes convected with the tide, as advocated by Shinohara et al. (1969). This makes it 
possible to allow for substantial tidal amplitudes. 

The convected co-ordinates are introduced and some simple consequences of volume 
and contaminant conservation are derived in 0 2. Then in § 3 a preliminary simplifica- 
tion of the equations of motion is introduced, based upon the hypothesis that cross- 
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sectional mixing takes place rapidly relative to the tidal period and that the slope of the 
free surface can be neglected (Smith 1976). A further simplification is made in Q 4 on the 
basis of the additional hypothesis that the estuary is much shallower than it is wide 
(Fischer 1967). The resulting description of the inter-tidal motion is used in Q 5 to find an 
expression for the dispersion coefficient (the effective longitudinal diffusivity ). Finally, 
solutions for steady salinity distributions in estuaries of simple shapes are presented in 
§ 6. 

The major hypotheses underlying the analysis are essentially geometric in nature. 
For example, with an average depth of 3 m and a transverse diffusivity of 0.1 m2 s-l 
(Talbot & Talbot 1974), the above assumptions are satisfied if the estuary is much 
shorter than 200 km (the tidal wavelength), narrower than 200 m and much wider than 
3 m. In practice the only serious restriction is the narrowness condition. Thus, before 
applying the results of this paper it should first be ascertained whether the main varia- 
tion in the contaminant concentration occurs in a region for which the narrowness 
requirement is met. Of course, it  is of little consequence if the modelling of dispersion 
should be inaccurate in a regionwhere there is only anegligible concentrationgradient. 
It must be emphasized that additional physical processes become important for wide 
estuaries (Holley, Harleman & Fischer 1970; Chatwin 1975). This will be the subject of 
a further paper. 

As might be expected, the analysis provides new insight into several old results. For 
example, the tidal-averaged dispersion equation (Arons & Stommel 1951) is found to 
be more appropriate to axes moving with the tide than to the usual stationary axes. 
The gross effect of buoyancy can be quantified in terms of a single dimensionless 
number (Fischer 1976). Transverse shear is found to be the dominant mechanism for 
dispersion (Pischer 1967). Also, the dispersion coefficient for an oscillatory flow can be 
well approximated by that of a steady flow with the same mean absolute velocity 
(Bowden 1965; Holley & Harleman 1965) provided that the salinity gradient and the 
channel curvature are both small. For the last two results it is important to recall the 
requirement that cross-sectional mixing takes place rapidly (Holley et al. 1970). 

2. Conservation laws in moving axes 
To a first approximation the tide merely shifts the contaminant distribution back 

and forth along the estuary without any net dispersion. This has two unfortunate 
consequences as regards calculation procedures which use the usual fixed co-ordinates. 
First, most of the effort is expended watching the relatively rapid deformations of the 
flow. Second, it is essential that the advection be very accurately represented as 
otherwise spurious numerical diffusion can result (Harleman & Thatcher 1974). The 
most general method for avoiding these difficulties is to employ a fully Lagrangian 
formulation which fixes attention upon the motion of identified fluid elements (Fischer 
1 9 7 2 ~ ) .  However, for flows which are primarily unidirectional it suffices to use axes 
moving at  the cross-sectional average longitudinal tidal velocity (Shinohara et al. 
1969). 

If x is the usual Eulerian distance along the centre-line of the estuary and t is the 
time, then we put 
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FIGURE 1.  Concertina-like deformations of the contaminant distribution. 

e A is the cross-sectional area, X H ( t )  is the head of the estuary and f ;  is the pseud 
Lagrangian co-ordinate (see figure 1 ). A routine calculation yields the transformation 
rules 

where A ,  is the cross-sectional area a t  the initial time 7 = 0 and the local longitudinal 
velocity U of the co-ordinate system satisfies the equations 

ax = (A/A,)  at, at = a7 - U(A/A,)  86, ( 1 b )  

a,U = -A,8,A/A2,  AU = 0 a t  ( =  tH. ( 1 c )  

In its familiar Eulerian form the equation for the global conservation of volume is 

a,A + a,(Au) = 0, 

where u is the longitudinal velocity and overbars are used to denote a cross-sectional 
average value. In  the moving axes this equation takes the even simpler form 

a, [A(G - U ) ]  = 0. P a )  

On performing the integration with respect to f ; ,  we can write 

u) = Q H ( 7 ) ,  

where QH can be interpreted as the discharge of fresh water into the estuary. For 
tidally dominated flows QH is composed of two nearly cancelling terms. 

If the longitudinal turbulent diffusion can be neglected then it is possible to derive a 
global conservation law for the concentration c of a conserved pollutant (such as salt): 

at(Ac) +a,(AZE) = 0.  

The analogous equation in the moving axes can be written 

A ,  a T E  + Q H  + at [ A u ( c - ~ ) ]  = 0.  

For long-term dispersion the concentration can be assumed to be fairly we11 mixed 
across the estuary, i.e. c - 5 is small. This, together with the assumption that QH is 
small, enables us to infer that in the first approximation 

a,c = 0. (3 a )  
5-2 
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Thus, as has already been anticipated, on the tidal time scale there is no dispersion and 
the contaminant distribution is carried back and forth along the estuary. 

In  the next approximation we attempt to determine the slow evolution of the con- 
taminant distribution. This implicit distinction between effects on the tidal time 
scale and effects on longer time scales can be formalized mathematically by the use of 
two time scales T and T and by putting 

(Cole 1968, chap. 3). The short time scaler is associated with the relatively rapid (semi- 
diurnal or diurnal) variations in the phase of the major tidal constituents and, to avoid 
a profusion of long time scales, T is associated with all of the following: the dispersion 
of the contaminant, the time dependence of Q H ,  and the frequency-splitting of the 
tidal constituents (or equivalently the variation in tidal amplitudes). Using angle 
brackets to denote an average with respect to the short time scale T, we can deduce 
that on the long time scale C satisfies the longitudinal dispersion equation 

Although the notation for the two types of averaging follows the usage of Fischer 
(1972 b), here the interpretation of (. . .) is slightly different owing to our use of tide- 
following axes. 

To evaluate the final term in ( 3 b )  we must determine the cross-sectional struc- 
ture both of the flow and of the concentration. In  8 5 it is found that for small shallow 
estuaries 

( A U ( ~  - c)) = - A , ( ( A / A , ) ~ E )  at c,  
where E is the instantaneous longitudinal dispersion coefficient. Thus the dispersion 
equation has the familiar diffusion-equation structure (Taylor 1953) : 

This is equivalent to the equation by Shinohara et al. (1969). However, their modelling 
of the shear-dispersion term was empirical rather than deductive. 

The boundary conditions at the ends of the estuary would typically be 

QHC-Ao((A/A0)2E)asC = QHcH at f = E H ,  E = C ,  at f = f S l .  ( 3 d )  

Here cH is the contaminant concentration of the inflow, c,, is the concentration far out 
at  sea and denotes the mouth of the estuary. For non-conservative contaminants, 
such as heat and domestic waste, extra terms would have to be included in ( 3 c ) .  Out- 
flows situated at fixed Eulerian positions along the estuary would correspond to 
distributed source terms in the pseudo-Lagrangian equations (2a) and ( 3 c ) .  

The similarity between the co-ordinates 5 and x explains why reasonable predictions 
of contaminant dispersion can be obtained with the tidal-time-averaged Eulerian 
equation 

(Arons & Stommel 1951). Indeed, a sufficient condition for this equation to be valid in 
the moving frame of reference is that the tidal variations in area are small. To justify 
the use of the equation in the usual fixed axes, we need the more stringent assumption 
that the tidal excursions are short relative to the length scales both of the contaminant 
distribution and of the channel geometry. 

( A )  8, C + QH a,C - a,((A) ( E )  a,E) = 0 
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3. Equations of motion 
The primary purpose of this and the next section is to obtain a sufficiently detailed 

mathematical description of the fluid and contaminant motion to permit the evaluation 
of the shear-dispersion term in ( 3 b ) .  Such is the complexity of the situation which we 
are studying that it is necessary to make many simplifying assumptions. For example, 
use has already been made of the assumptions that the longitudinal current is pre- 
dominantly tidal, that the contaminant distribution is well mixed across the estuary, 
and that the motion can be characterized in terms of long and short time scales. In  this 
section we develop the consequences of the estuary having relatively rapid lateral 
mixing and we make explicit the quantitative nature of the earlier assumptions. 
Consideration of the implications as regards dispersion are recommenced in 0 5. 

The mathematical analysis given below has several points of contact with the work 
of Imberger (1976) and of Smith (1976) concerning the dispersion of buoyant con- 
taminants. In  particular, the estuary shape is assumed to be both narrow and shallow, 
turbulent mixing is represented by eddy diffusivities and we use a strong form of the 
Boussinesq approximation (i.e. gravity is such a strong force that the motion along the 
estuary can be driven by anegligibly small slope of the free surface). The most apparent 
differences from the work of Imberger (1976) are that here it is the longitudinal buoy- 
ancy-driven current that is neglected and not the tidal current, and also that Imberger 
foreshortens his analysis by combining the two levels of approximation described in 
this and in the next section. The major differences from the earlier work of the author 
(Smith 1976) are that here the longitudinal extent of the contaminant distribution 
and the oscillatory longitudinal velocity are an order of magnitude greater than was 
previously assumed. Thus longitudinal turbulent diffusion is of minor importance; the 
time scale for longitudinal dispersion greatly exceeds the tidal period; the contaminant 
distribution is advected a substantial distance back and forth with the tide, and the 
longitudinal buoyancy-driven current is relatively insignificant. 

The hypothesis of rapid mixing is tantamount to assuming that the estuary is very 
narrow relative to its length. Thus we introduce an expansion parameter E :  

€2 = ap, 
where 93 and 2’ are respectively typical width and length scales of the estuary. In  
order to perform a systematic analysis of the equations of motion we must specify the 
€-ordering of the many terms relative to the basic dimensional quantities 9YH and a, 
where eH is a typical discharge velocity associated with the fresh water. For any 
specific physical case an appropriate scaling can be ascertained from field or laboratory 
measurements (Imberger 1976). However, this can lead to unnecessarily restrictive 
assumptions. Here we make our results as widely applicable as possible by retaining as 
many physical effects as are compatible with the basic assumptions. The tidal eleva- 
tion, lateral velocities and eddy diffusivities are of order E O ;  the tidal period, longi- 
tudinal velocity and the reduced gravity associated with salinity are of order E-1, and 
the evolution time scale is of order E - ~ .  

To derive the ‘maximum-generality ’ scalings the equations of motion were solved 
in the first instance for arbitrary scalings with the sole hypothesis of rapid mixing. 
Indeed, the initial tentative definition of the expansion parameter and the choice of 
basic dimensional quantities differed from those given above. Then more and more 
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physical effects were assumed to have a leading-order effect upon the dispersion 
coefficient until the scalings became fully determined. The effects included at leading 
order are the longitudinal tidal current, buoyancy-driven transverse currents and 
Coriolis and centrifugal accelerations. However, it is assumed that the buoyancy- 
driven longitudinal current does not affect the dispersion at  leading order. This is an 
opposite extreme to that studied by Imberger (1976) and by Smith (1976). The par- 
ticular choice of 42H and A? as basic quantities and the definition of the expansion 
parameter B were made aposteriori to emphasize the mathematical similarities with the 
author’s earlier work (Smith 1976). 

The resulting version of the field equations and boundary conditions in the moving 
axes is 

E2aT c + €8, c + e(A/AO) (u - u)  8, c + va, c + wa, c 
= a , ( K 2  a, c) + a , ( K ,  8, c) + e 2 ~ - 1 K ,  a, c + 0(€3), (4u) 

(4b) 

va,v+wa,v-U2R-1+fZL+E-3ay~ = a,(2v22a,V)+a,[v23(a,v+a,w)]+O(E), (4c) 

(4d) 

( 4 4  

u = v = w = i3,c+a,hi3,c+O(e4) = 0 on z = -h ,  (4.f) 

a , ~  = a,v+a,w = aZc = w-Ea,c-E2aTc = o(~3) on z = 5. ( 4 d  

vag u + wa, u + (A/AO) a,Fp = ag(”12 u) + a,( v13 8, u) + o(e), 

va, w + wa, w + e--sa,p fe-1ags = a,[v,,(a, v + a, w)] + a,(2v3, a, w) + o(E) ,  

~ ( A / A , )  a, u + a, [( 1 + ~ - 2 ~ - l y )  V I  + (1  + c - 2 ~ ~ )  a, w = 0, 

In  these equations (E-1u, v, w) is the velocity vector, c 2 R  the radius of curvature of the 
centre-line of the estuary, ef the Coriolis parameter, c 3 p  the excess pressure above 
fresh-water hydrostatic, s the salinity, e-lug the reduced gravity, 6 the surface eleva- 
tion, the K~ are eddy diffusivities for the contaminant and the vir are eddy diffusivities 
for momentum. The occurrence of the salinity in ( 4 4  is based upon the assumption 
that salt is the only contaminant which results in long-term density variations suffi- 
cient to modify the flow. The significant differences from equations ( lu-g)  of Smith 
(1976) are the occurrence of r,  f and R and the change of scaling for p .  

To simplify (4a-9) we employ regular perturbation expansions in powers of E :  

p = p(O)+~p(1)+~2p(2)+ ..., etc., 

where thepcn, etc., are all independent of E .  By hypothesis do) and s(O)are functions only 
of 6 and T (i.e. to the first approximation the contaminant distribution is laterally 
well mixed and is advected with the tide). Other immediate deductions are that the 
Ieading-order pressure is independent of y and z and that the lateral velocities can be 
represented in terms of a stream function: 

do) = a, $, w(0) = - a, +. 
These results permit the leading-order non-trivial terms from (4a-9) to be combined 

(5 a) 

(5b) 

into the much simpler equations 

a, $a, ~ ( 1 )  - a, $a, 0 1 )  - a,( K~ a, ~ ( 1 ) )  - a,( K ,  8, ~ ( 1 ) )  = ( U(0) - d o ) )  ( A  /Ao)  8, do) ,  

a, $8, d o )  - a, $8, u(0) - a, d o ) )  - a,(”,, a, d o ) )  = U(O)P, 
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(a, $8, - 8, $.a,) [a;$ +- WJ + (8: - 8;) [vZ3(8: - a;) $1 + 2a, a, wzZ + Y ~ ~ )  a, 8, $1 
- - - aga dl) - 2 R - l ~ ( ~ ) a ,  d o )  + fa, d o ) ,  (5  c )  

u(0) = $ = a,@+a,ha,@ = a,c(l)+a,ha,c(l) = 0 on x = -h,  ( 5 4  

(5e)  

Y 

a, do) = $ = a:@ = a, c(1) = 0 on x = 5. 
Without loss of generality we require that c(1) has zero cross-sectional average and that 
the longitudinal pressure gradient U(O)F([, 7, T )  adjusts to achieve the required value 
of id@. 

The results in $ 2  were derived without reference to an explicit approximation 
scheme. For consistency, we now note the formal equivalents of the major results: 

a, U(0) = -Aoa,A/A2, AU@) = o at 6 = 

a, ~ ( 1 )  = - A ,  aT A/A2, A ~ ( 1 )  = o at 6 = lH,j 

A aT c(0) + Q~ a, c(0) + a, ( A  u(o)c(l)) = 0. 

( I c * )  

;iiCO) = U(O), A(@)  - UCU) = QH(T) ,  P b * )  

(3b*)  

Equations (2b*)  can be derived directly by integrating the order-e and order4  
terms in the continuity equation ( 4 e )  across the estuary. Similarly, the order4  
terms in the diffusion equation (4a )  permit a direct derivation of (3b*) .  

4. Shallow-water expansion 
The equations ( 5 ~ - e )  for the inter-tidal motion are still intractably complicated. 

One possible simplification is to use series expansions based upon the assumption that 
the effects of buoyancy, curvature and rotation are small (Erdogen & Chatwin 1967). 
Instead, we shall follow Fischer (1967) and base an approximation scheme on the fact 
that estuaries are typically much shallower than they are wide. Thus we introduce a 
second small parameter 

and define a new vertical co-ordinate 
6 = %/A9 

z* = 6-%, 

where 2 is a typical channel depth. When B and 6 are related it is possible, as is done 
by Imberger (1976), to incorporate this second stage of approximation in that of $ 3. 

In order to retain the maximum number of physical effects and, secondarily, to give 
equal importance to all of the terms in the dispersion equation (3b*) ,  we are led to 
specify the scalings 

vij = Svs ,  K~~ = 8~2, @ = Sll.*, 5 = 65*, a = 6Va*, 

p = &1P*, f = &-if *, u = a-tu*, c(1) = & W * ,  

where the starred quantities are of order 1. These scalings were derived on a similar 
basis to those in the previous section. The considerable difference in scalings from the 
work of Smith (1976) is due both to a different choice of basic dimensional quantities 
and to the retention of different physical effects. 

It is not to be expected that the maximum-generality scalings provide the most 
effective way of viewing all estuaries. We need to produce specifications for 9, &?, 2 
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and aH which imply realistic scalings for the many other physical terms. Otherwise 
the analysis may be regarded as being over-elaborate. Let us take the case of the River 
Colne downstream of Colchester (England) with an above average (but by no means 
exceptional) flow rate. It may be characterized by 

2 = 10km, = loom, Z = 4m, @H = 0.04ms-l.t 

The maximum-generality scalings for the other physical quantities are 

tidal elevation, 4 m; lateral velocities, 0.04 m s-l; eddy diffusivities, 0.2 m2 s-l; 
Coriolis parameter, 2 x s; longitudinal velocity, 2 m s-l; 

reduced gravity, 0.1 m 5-2. 

None of these scalings are seriously unrealistic (Talbot & Talbot 1974). Thus, for the 
River Colne at  least, it appears to be a priori necessary to utilize the full scope of the 
present analysis. 

With the stars suppressed the new version of (5a-e) is 

- a, c(1)) + s{a,($a, c(1)) - a,($a, c(1))) - 628,(K2 a, ,(I)) 
= 62( U(0) - d o ) )  (A/Ao)  a p ,  

- a,zL(o)) + O(6) = U(O)F, 

a;$) + O(S) = - Olga, s(1) - 2R-lu‘o)a, u(0) +fa, ?A@), 

do) = $ = 8, $ + S2a, ha, $ = 8, c(1) + S2a, ha, ~(1) = o on z = - h, 

a ~ ( 0 )  = $ = a:$ = a,c(l) = 0 on z = 5. 
We now make explicit use of the fact that 6 is small and formally seek regular pertur- 

bation solutions to the above equations: 

c(1) = c6“ + 6 C p  + 62c(,1) + . . . . 
After a straightforward but lengthy calculation, we find that if the eddy diffusivities 
are independent of z then 

w$ = BU(O)F[([ + h)2 - (c- x ) 2 ] / v 1 3 ,  (6a) 

where y* are the two sides of the channel. The restriction upon the form of the eddy 
diffusivities serves merely to shorten the length and complexity of the above solutions. 
The expression for eo shows that the transverse flow near the free surface responds to 
the buoyancy, centrifugal and Coriolis forces and that there is a return flow near the 
channel bed. Equation ( 6 d )  is a mathematical statement of the major mechanism 

t The Surface Water Year Book of Great Britain 196f3-1970. Water Resources Board & 
Scottish Development Department, 1974. H.M.S.O. 
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underlying longitudinal dispersion (Taylor 1953) : that there is a balance between 
cross-sectional mixing as augmented by the cross-flow and the longitudinal spreading 
due to non-uniform advection. 

On performing the vertical integration, ( 6 d )  can be rewritten as 

8, ckl){K [KRR + KfR Kjj -t K R ~  + Kj, + K,,5'1} = &o(A/AcJ) a, C'O), (7 1 
where we have used the abbreviated notation 

Qo = ju: dy' J'h (ut)  - U(O)) dz = J,: dy' j ' ( ~ $ 1 -  U(0)) dz, 
- h  

K = %(C+h), 

K R R  = 37888 U(0)4F4(f;+h)15/45045(840)2R2V& V& K3, 

KfR = - 15 872 f U(')3F3([ + h)13/45 045.120.840 R v : ~  V& K3, 

K f j  = 128f2U(0)2P2([+h)11/3465(120)2~~3 v ~ ~ K ~ ,  

KR, = i207aqav s ~ ~ ) U ( O ) ~ F ~ ( [  + h)12/6930. 48.840 R V ? ~  vf K ~ ,  

K,, = ig(aga,S~))2([+h)9/630 (48)2v&. 

Kj,  = - ~ g a , ~ ~ ~ ~ U " F ( f ; + h ) 1 0 / i 5 . 4 8 . i 2 0 ~ ~ 3 ~ f 3 ~ 3 ,  

For the important special case in which salt is the contaminant, (7) is a cubic equation 
for a, si1). In extreme cases there can be three real roots, with jumps between the roots 
corresponding to front-like discontinuities. We note that &, involves only the trans- 
verse shear and not the vertical shear. 

In the above analysis it is implicit that e < 6 < i .  However, at  the expense of 
lengthier calculations, the same results (6a-d)  can be obtained with a double expansion 

c = Z E W C j i ) ,  € < 1, s Q 1.  
i. i 

Thus the loss of generality is illusory. 

5. Dispersion coefficient 
We are now in a position to evaluate the shear-dispersion term in (3b*) .  Making use 

of the facts that c$) has zero cross-sectional average and is independent of z, we can 
show that 

= -A,((A/A,)W) a p ) ,  (8 a )  

where E is the instantaneous dispersion coefficient 

E = A-l Qi { K  + [ K R R  + K j R  + Kjf + KRs + Kjs + K,gs]}-' &/ (8 b )  I;-+ 
(Smith 1976). Thus the dispersion equation takes the form 

A,  aT c(0) + Q~ at c(0) - a S ( ~ , ( ( ~ / ~ , ) 2 ~ )  a, c(0)) = 0, (3c* )  

where 0 0 )  may be interpreted either as the first approximation to the contaminant 
concentration or as the cross-sectional average concentration E .  In applications 
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(8 b )  and (3  c*) can be used with unscaled, dimensional variables, the main requirement 
for validity being that cross-sectional mixing takes place in less than the tidal period. 

We recall that Qo is an incomplete integral across the estuary of the vertically 
integrated volume flux, that K is the vertically integrated turbulent transverse 
diffusion coefficient and that the subscripted K terms show bow centrifugal, Coriolis 
and transverse buoyancy effects augment the transverse diffusion. To evaluate the 
salinity terms it is first necessary to solve the cubic equation (7).  With this identifica- 
tion of terms (3b*) and ( 8 b )  clearly illustrate three well-known results: first, that for 
estuaries with a transverse-mixing time scale shorter than the tidal period the disper- 
sion is dependent on the transverse shear and not the vertical shear (Holley et al. 
1970); second, that for salt the dispersion equation (3c*) is strongly nonlinear in that 
E is a function of the salinity gradient (Erdogan & Chatwin 1967; Chatwin 1976); 
third, that unless the contaminant actively modifies the turbulence the dispersion 
coefficient for neutrally buoyant contaminants is the same as that for salt (Stommel 
1953). 

Equation ( 8 b )  differs slightly from the results derived by Smith (1976). In the 
present analysis allowance is made for the curvature of the channel and the effect of the 
earth's rotation, hence the occurrence of the new transverse circulation terms KRR, 
KjR,  K j j ,  K,, and Kj,. However, the buoyancy-driven longitudinal circulation has 
been ignored and the incomplete integral of the volume flux does not take the form 

This is a consequence of our having assumed that the longitudinal extents of the 
salinity distribution and the tidal current are an order of magnitude greater than 
was previously assumed. There is a very brief time interval close to the turn of the 
tidein which the Q1 term is significant (Smith 1976). In the present context it is 
the tidal average ( 8 a )  that is of concern, and for this purpose ( 8 b )  is quite adequate. 

The scaling assumptions made by Imberger (1976) focus attention on a restricted 
set of physical effects and his result for the dispersion coefficient includes only the Q1 
and K terms. Furthermore, in his analysis the estuary is assumed to have a rigid cover 
in contact with the water. Thus there is no possibility of direct comparison with the 
present work. 

A particularly simple, and fairly realistic, way of modelling the variation of the 
eddy diffusivities with position and time is by means of the formulae 

K i  1. K; I&?)[ ( h + c ) ,  V i j  = V ; j  ['@)I (h+C), (9) 

where K: and vij are empirical constants and fi is the velocity at the free surface (Talbot 
& Talbot 1974). These relationships considerably simplify the dimensional structure 
of (6)-(8). In particular, the dispersion coefficient E scales as 

EH/B2Up, 

where U,(g) is the local peak value of U(O)(t, 7 )  and H and B are the local counterparts 
to i?? and 99. Also, it is convenient to measure the importance of buoyancy, curvature 
and the earth's rotation in terms of the dimensionless groups 

G = agHB(A/A,) a,s(o)/U:, HIR, fH/Up. 
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FIGURE 2. Definition sketch of the cross-sections used in the analysis. 

From the dispersion equation (3c")  we find that an order-of-magnitude estimate for G 
is given by the local 'estuarine Richardson number ' 

Ri = QH agH/B2 U;. (10c) 

This differs by the factor H/B from the definition employed by Fischer (1972b). 
For a channel of parabolic cross-section (as shown in figure 2) and with 

K; = v& = 0.005, K: = 0.02, 

the coefficients in (7) and ( 8 b )  have the values 

4 
Qo = BHUc0) (3", - S~~-'(Y/B) + G(Y/B) [5 - 2 ( ~ / @ ~ 1 [ 1 -  ( Y / B ) ~ I ~  - (y/B)[1 - ;CY/B)~I) 

K = 0.03395 H21 U(O)l [ 1 - (Y /B)~]$ ,  

KR, = 259.0 (H/R)2 H21 U(O)I [l - (Y/B)~]:, 

K f R  = - 223.7 ( H / R )  f H 3  sgn ( U(O)) [ 1 - ( Y / B ) ~ ] ~ ,  

K f f  = 48.36f2H2 I U(O)]-' [l - ( Y / B ) ~ ] ~ ,  

KR, = 81.42 ( H / R )  "9 8g~i')H4 I U'O'I-' [l - (TJ/B)~]:, 

Kfs  = -64.25aga,si1)fH5 IU(o)l-2sgn(U(o))[1-(y/B)2]4, 
K,, = 21 .40(~ tg8 , s&~) )~H~1  U(0)I-3 [l - (Y/B)~]; .  

The range of sizes of the numerical factors is due to our use of unscaled quantities. For 
example, it is implicit that H / R  is of order €8. Figures 3 (a) ,  ( b )  and ( c )  show how buoy- 
ancy, curvature and the earth's rotation each in turn decrease the instantaneous dis- 
persion coefficient. 

We note that K is proportional to K; and that the subscripted terms vary inversely 
as K; vLf. Thus the results are fairly sensitive to the choice of constants. In  particular, 
for flows in which turbulence is the dominant transverse mixing mechanism, the dis- 
persion coefficient E has a factor of minus one sensitivity with respect to the constant 
K;. The position in the parameter space ( l o b )  of the transition between turbulence- 
dominated and circulation-dominated mixing has a factor of two sensitivity, while for 
flows dominated by Coriolis, curvature or buoyancy effects E has a sensitivity of plus 
three. 

In evaluating the tidal average (8a)  care must be taken to allow for the variations in 
breadth, depth and channel curvature as the axes are advected up and down the 
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FIGURE 3. The dependence of the instantaneous dispersion coefficient E upon (a) the salinity 
gradient, (b )  the channel curvature and (c) the Coriolis effect. 

estuary. If such variations are small, then thelinearity of figures 3 (a)-(c) indicates the 
efficacy of the rule of thumb (Bowden 1965; Holley & Harleman 1965): that the dis- 
persion coefficient is the same as if the flow were steady with velocity equal to the mean 
absolute velocity of the oscillatory flow. Again, we recall the important proviso that 
the period of oscillation is longer than the time scale for cross-sectional mixing (Holley 
et al. 1970). If the effects of buoyancy, curvature and rotation are neglected then for 
parabolic channels 

E = 0.096B21 U(O)l/H. (11) 

The consistently small value of EH/B2Up means that the estimate (1Oc) for (7 is low by 
at least a factor of ten. 

Having done all the above computations we can now re-assess the importance of the 
various physical effects in the case of the River Colne. Thus we specify 

R =  400m, B = 50m, H = 4 m, f = 10-4s-1, 

Up = 0.7 m s-1, QH = 5 m3 s-l. 
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With allowance for a factor of ten in G ,  this leads to the estimates 

G = 0.06, H/R = 0.01, fHlU, = 0.0006. 
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Thus, from figures 3 (a)-(c) we can infer that it is reasonable to neglect the Coriolis 
effect, but that the salinity gradient and the channel curvature can greatly reduce the 
dispersion. To get agreement with Talbot & Talbot’s (1974) measured longitudinal 
dispersion coefficient for the River Colne of 14.2 m2 s-1 we need take the tidal average 
of EH/B2Up to be 0-03. This is reassuringly close to our estimates (see figure 3a). 

6. Simple solutions 
Along a real estuary the channel depth and breadth vary markedly. Thus, unless we 

can approximate these variations by simple functions (Shinohara et al. 1969), the 
transformation (1 a)  to tide-following axes will have to be done numerically. Further- 
more, if buoyancy, curvature or Coriolis effects are significant then analytic expres- 
sions, such as (1 l), are not available and it will be necessary to calculate E numerically. 
For some purposes qualitative results are sufficient. For example, to what extent can 
field results in one estuary be used to make predictions about another estuary? One 
means of addressing such questions is via special solutions for a class of simplified 
problems. It is to this end that this section is directed. 

The first and simplest example concerns a uniformly descending valley of parabolic 
cross-section (figure 4a) .  The analogous situation for a triangular cross-section was 
analysed by Shinohara et al. (1969). In  Eulerian co-ordinates the profile is specified as 

z / x  = - ($12) + (Y/=@)2, 

where P/9 is the very small slope of the valley bottom. Since the tidal elevation (5 is 
assumed to be constant along the estuary, there is merely a displacement of the entire 
water region 

where we have chosen the time origin to correspond to g = 0. 
The local channel depth and breadth scales are given by 

x = r g  - (5(9/2), U(” = - ar (5(2/*), (12a) 

H = X($/9) ,  B = 9Y($/2)+. 

It is these &dependent scalings which we must use in the results derived in the pre- 
vious section. In  particular, if buoyancy and Coriolis effects are negligible, then from 
(11) we find 

where Q is the tidal frequency and a is a typical tidal amplitude. 

( (A /Ao)2E)  = 0 . 0 9 6 ( ~ Q = @ ~ 9 / 2 ~ )  (13, c/asZl), (12b) 

In order to non-dimensionalize the longitudinal dispersion equation ( 3  c*) we define 

E = €J9, = T Q d 2 / X 2 9 ,  gH = $QH2/=@3Qa,  p = O-096(lar[/aQI). (13) 

Thus aH is a dimensionless discharge velocity associated with the fresh water. Sup- 
pressing the tildes, the resulting equation is 

@aT E + aH a, c -pa,(@a, C) = 0, ( 1 2 c )  

where we have identified do) with the cross-sectional average concentration C. 
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FIUIJRE 4. Estuary shapes for which explicit solutions are presented. 

If the flow conditions are independent of time, then (12c), together with the bound- 
ary conditions ( 3 4 ,  has the steady solution 

c = C , + ( C I M - C I I ) ~ ~ ~ { ~ ~ - ~ ~ Y H ( ~ ~ ~ - ~ - ~ ) } .  ( 1 2 4  

Thus, for small 9YH the transition between upstream and sea conditions takes place on 
the length scale 4,r29Y& 2’. This implies that in drought conditions the upstream 
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FIGURE 5. Steady contaminant distributions corresponding to  several values of the non-dimen- 
sional fresh-water discharge velocity for the estuary shapes shown in figure 4. 

penetration of salt or other contaminants becomes very sensitive to the fresh-water 
discharge. Also, when we test whether the estuary meets the narrowness requirement, 
the most appropriate width for us to use is 2/.-'4?H $3. This is because further out to sea 
the concentration gradients are small and any unreliability of the estimate of E ,  due to 
the estuary being wide, does not significantly affect the overall solution for C. 

Figure 5(a) shows the result ( 1 2 4  for the special case 

C H  = 0, CM = 1, <M = 1, ((a,g/aQl) = 1. 

It is only for very small 9YH that the profiles have the S-shape characteristic of salinity 
distributions in estuaries (Arons & Stommel 1951). However, realistic estimates of the 
fresh-water discharge rate Q H  do indeed yield appropriately small values for 9YH. For 
example, the value 9YH = 0.01 corresponds to 

Q H  = 25m3s-l, 2 = 10m, 3? = 500m, a = 1m. 
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If the effect of the salinity gradient is not negligible, then there is a reduction in the 
longitudinal dispersion coefficient (see figure 3 a). Qualitatively we can infer that there 
will be a compensating steepening of the central portion of the salinity profiles, making 
the S-shape more pronounced. 

The second example concerns an exponentially widening valley of parabolic cross- 
section (see figure 4b). The Eulerian specification is 

z / Z  = - 1 + (y/&?)2exp ( - 22/.9), - 00 < x < x,. 
When the surface elevation is 5, the volume of water upstream of a position x is given by 

+&?ZS[ 1 + [/Z]3 exp ( z /9 ) .  

Now, the volume upstream of a position 6 remains constant when we use axes moving 
with the tide. Thus we can deduce that 

!J9-#In[1+[/mY ?Po)= -#(9/Z)[1+[/Z]-'aT[, ( 1 4 ~ )  

where once again we have taken 5 = 0 to define the time origin. 
The local channel depth and breadth scales are given by 

H = Z [ 1 + $81, B = &?[ 1 + exp (6/.9). 
If the effect of the salinity gradient is negligible, then from (1 1) we have 

( (A/Ao)2E)  = 0 . 1 4 4 ( ~ Q & ? ~ . 9 / Z ~ )  exp ( 2 6 1 9 )  ([1+ c/Z]-4 la7 c/aQl). (14b) 

The appropriate non-dimensional version of the longitudinal dispersion equation 
(3c*) is 

Here 6, T and %H are as defined in (13) and 

efaT C i- %H a, E - ,uac(eXac C) = 0. (14c) 

,u = 0.144([1+[/m-41a,5/aal). 

For steady flow conditions the corresponding steady solution is 

C = cH + (c, - cH) exp {+,u-WH [exp ( - 3CM) - exp ( - 3E)]). 

CH = 0, c, = 1, 6, = 0, ([1+5/3*iP1-4pT~/aQl) = 1. 

( 1 4 4  

Figure 5 (b )  shows the results for the special case 

We note that for small discharge rates there is a very weak (logarithmic) dependence of 
the upstream penetration upon the fresh-water discharge. 

The final example is a power-law generalization of the previous example (see figures 
4c-e). The Eulerian description is 

z/Z = - 1 + (~/&?)'(x/L?)-'p with 0 < X, 0 < /3. 
The volume upstream of a position x is given by 

Hence it follows that 
$ma?[ 1 + 5 / Z ] ~  (x/.9)p++z (1 + 2/3)-1. 

x = f[l + 5/Z]-3(1+q 
U(0) = - Q( 1 + p)-1 (fl.9) (9/S) aT 5 [ 1 + g/S]-(5+28)/'(1+fl. ] (15a) 

We observe that the tidal velocity increases linearly with distance from t,he head of the 
estuary. 



Dispersion of contamimnts in estuaries 145 

The local depth and breadth scales are 

If the effect of the salinity gradient is negligible, then from ( 1  1 )  we have 

( (A /AJ2  E )  = 0.144( 1 +p)-l (aQLP9/Z2)  (€JL)1+2P ( [ 1  + tJ2'](1-*8)/2(1+8) 18, </aQl). 

The non-dimensional version of (3c*)  is 
(15b)  

( l a c )  csa, c + %H a, s - pa,(p+38a, C) = 0, 
with 

For steady flow conditions (15c)  has the steady sohtion 

p = 0-144(1+,9)-1([1 +c/Z](1-88)/2(1+8) Ia,c/aQl). 

) ( 1 5 4  
E = CH + (cM - c H )  exp {+p-'/?-'%H(<Gl- 5-38)} for p > 0, 

CH + (cAZ- c H )  ( [ / ~ M ) " - " R  for /3 = 0. 

Figures 5 ( c ) ,  ( d )  and ( e )  show the results for p = 2, Q and 0 with 

CH = 0, = 1, EM = 1 ,  ( [ I  + [/2f?](1-88)/2('fP) (8, c/aQI) = 1 .  

We note that for small discharge rates the demarcation between upstream and 
sea conditions is approximately at the position 

k = (%H/3p1)1/38 for p > 0. 

Thus the more the estuary resembles a channel of constant width, the greater is the 
sensitivity to the discharge rate. This suggests that the reclamation of valuable 
estuary-side land and channel dredging both contribute to the vulnerability of 
estuaries to variations in the river flow. An ameliorative effect ignored in the above 
analysis is that a reduction in shoreline irregularities can reduce E (Okubo 1973), 
thereby lowering the values of the discharge rates to which the above arguments apply. 

It is of particular interest to compare the two solutions shown in figures 5 ( a )  and 
( d ) ,  since the plans of the estuaries are identical. For large discharge rates the quanti- 
tative agreement is remarkably good. However, the agreement deteriorates rapidly 
with decreasing aH. Thus we are led to the conclusion that, even when the effects of 
salinity are negligible, results are transferable from one estuary to another only if there 
is a geometric similarity in both plan and elevation. If the salinity effect is significant, 
then the estuaries must also have the same estuarine Richardson number. 

I wish to thank the Central Electricity Generating Board for financial support, and 
to thank the referees for drawing my attention to the papers of Imberger and of 
Shinohara et al. 
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